SOLUTION

Ecosystem Service and Conservation (ESC)

From forests to wetlands, our ecosystems are invaluable, yet fragile. Reveals unseen threats to biodiversity using spatial data science and environmental analysis.

Use Cases

Biodiversity Monitoring

Biodiversity Monitoring

Environmental Analysis & Management

Environmental Analysis & Management

Conservation Priority

Conservation Priority

Biodiversity Monitoring

Keeping track of environmental changes is essential for early biodiversity resource protection. We involve the continuous observation of air, water, and land conditions using geospatial technologies. This proactive approach ensures early detection of potential issues, enabling swift, informed decisions that safeguard our valuable biodiversity.

See More Publication

usecase

Discover articles and tutorials to help you build better

Ilustrasi untuk Optimalisasi Restorasi Mangrove: Solusi Iklim Berbasis Data untuk Indonesia

Optimalisasi Restorasi Mangrove: Solusi Iklim Berbasis Data untuk Indonesia

Indonesia, sebagai negara dengan ekosistem mangrove terluas, memiliki potensi besar dalam mitigasi iklim. Kajian ini menguraikan pendekatan berbasis data untuk menentukan lokasi, spesies, dan strategi restorasi mangrove yang paling efektif, didukung oleh proyeksi penurunan emisi karbon untuk 100 tahun ke depan.

Ilustrasi untuk Memahami Kota Lewat Mata Warga: Urban Perspective Analysis

Memahami Kota Lewat Mata Warga: Urban Perspective Analysis

Pembangunan kota seringkali mengabaikan persepsi emosional warga. Artikel ini membahas Urban Perspective Analysis, metode deep learning yang menggunakan citra jalan untuk memetakan bagaimana warga merasakan lingkungannya—apakah sebuah jalan terasa aman, hidup, atau membosankan. Sebuah cara baru bagi perencana untuk merancang ruang yang lebih manusiawi.

Ilustrasi untuk Mengatasi Krisis Sanitasi Bandung dengan Spatial Machine Learning

Mengatasi Krisis Sanitasi Bandung dengan Spatial Machine Learning

Meskipun ODF 100%, akses sanitasi layak di Bandung baru 69,12%. Penelitian ini menawarkan solusi inovatif berbasis spatial machine learning untuk merancang sistem sanitasi terpusat yang efisien, menargetkan kawasan prioritas dan mengusulkan WWTP baru untuk meningkatkan kesehatan kota.